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REPEATED MEASUREMENTS DESIGNS, III
BALANCED CONNECTED DESIGNS

By
C. Magda and A. Hedayat

Department of Mathematics
University of Illinois, Chicago

ABSTRACT

Repeated measurements designs (RM designs) are experiments
in which an experimental unit is exposed to a sequence of
treatments during a number of periods (days). A measurement
taken on a unit depends on the treatment administered in the
previous period (residual effect), the treatment given during
the present period (direct effect), the unit itself (unit
effect) and the present period (period effect). _

In the first part of the paper, after defining the con- _
cept of balanced and connected RM design, we proceed in cons-
tructing large families of balanced and connected RM design§
when the mumber of periods is less than the number of treat-
ments. In the last section we discuss the structure and the
ranks of the C-matrices for direct and residual effects which

arise from these designs, as well as the form of the best

linear unbiased estimators of estimable contrasts of residual

and direct effects.
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REPEATED MEASUREMENTS DESIGNS, III
BALANCED CONNECTED DESIGNS

By
C. Magda and A. Hedayat

Department of Mathematics
University of Illinois, Chicago

l. Introduction

A statistical design in which experimental units are used
repeatedly by exposing them to a sequence of treatments is
called a repeated measurements design (RM design). In a RM
design we administer t treatments during p periods to n
experimental units. The parameters t and p are usually
known to the experimenter. RM designs have been considered
in the literature under a variety of names such as crossover
or changeover designs, time series designs or before-after
designs. In these designs, apart from the direct treatment
effects, residual or "carry-over" effects are usually assumed.
It has been shown by A. Hedayat and K. Afsarinejad (1978),
that if certain balance for the residual and direct effects
is assumed, these designs become optimal in a large class of
designs. The cyclic RM designs that we shall construct
(precise definitions will follow), apart from having these
balancing properties, are also connected, i.e., all contrasts :
of residual and direct effects are estimable. Their cyclic struc~-
ture makes them easy to implement in practice. We also give

the best linear unbiased estimators (b.l.u.e.'s) for some of




the contrasts. Tables of such designs for small values of
t and p can be found at the end of the paper. The authors
hope that they would suffice for most practical applications.

2. Definitions and Model

Let us present the set-up in which we will be working.
Suppose d 1is a two dimensional array. If a 1s in position
d(i-1,J) in d and b is in position d(i,j) in d we
say that a precedes b (in the order of application).

We say that a follows b if b precedes a.

Definition 2.1. A balanced RM(t,p,n,xl,hz) design is a
pxn array d whose entries involve t treatments (labeled
0,1,...,t-1), satisfying the following conditions:
(a) the treatments along any column are distinct.
(b) A treatment occurs exactly A, times in each
row of d.
(¢) In the order of application, each treatment is
preceded in d by each other treatment exactly

12 times.

Part (a) in the above definition has been included mostly
because of esthetic statistlical reasons, such as treating a
column in the array as a fixed size block, etc... We refer

to the treatment in the (1,J)th entry of the design d .
by d(i,J). The basic divisibility conditions for the existence

of a balanced RM(t,p,n,xl,xz) design are the following:




Definition 2.2. A shift starting at i of (0,1,2,...,t=1)

iS (i,i+1,obo’t-l,o,l,ooo’i-l)u

Definition 2.3. We say that two shifts of (0,1,2,...,t-1)

are distinct if they start with different symbols.

Definition 2.4, A balanced RM(t,p,n,xl,Xz) design is called

cyclic if it can be decomposed into xl subarrays of size
pxt and the rows of each pxt subarray are shifts of

(0,1,2,...,t-1) .

Throughout the paper the underlying model will be:

Yyg=w+og +By+ Tqq,9) * Pa(a-1,3) * €145 1<1<p, 1< J<n

where e1J are assumed to have mean zero and covariance matrix :

o®I. The overall effect is u, a, 1s the effect of the 1°P

th

period, BJ is the effect of the J experimental unit,

Ta(1,4) is the direct effect of treatment d(i,j) and
»

Pa(k,) is the residual effect of treatment d(k,2). During
L
the first period (i.e., for 1=1), no residual effects are

assumed, sO pd(O 1) are zero for all J.
?




3. Construction of Balanced kil Designs

with minimal number of units

In this section we construct families of cyclic balanced
RM designs. The main result is contained in Theorem 3.1.
We begin with a couple of useful propositions. As we shall
see in the proposition that follows, the advantage of con-
structing balanced, RM designs by shifts is that condition
(c) of Definition 2.1 needs to be satisfied for one treatment

only. Let the treatments be (0,1,2,...,t-1}.

Proposition 3.1. A pxn array d, with ll subarrays gg

size pxt each, is a cyclic balanced RM(t,p,n,xl,lE) de-

sign if all the rows in each pxt subarray are distinct

shifts of (0,1,2,...,t-1) and, in d, the treatment 0 is

followed 1in order of application by every other treatment

exactly A, times.

Proof: Since the shifts in each pxt subarray are assumed
distinct, (a) is satisfied. Clearly (b) holds. To prove (c),
fix treatment Jj. By assumption, O precedes J exactly 12
times. So let 1 be different of O and Jj. The treatment
j=1 (mod t) is nonzero and hence, preceded by O 12 times
in 4. There are therefore exactly xz rows of length t

in various pxt subarrays in which J-i (mod t) is preceded
by O. In all these rows, J 1s preceded by 1, because each

such row is assumed to be a shift of (0,1,2,...,t-1). There-




fore J 1s preceded by i exactly 12 times.

The following proposition reduces the construction of a
cyclic balanced RM design to a partition problem and is our

tool for constructing these designs.

Proposition 3.2. Let Al(p-l) = (t-1) (i.e., A, = : i

A cyclic balanced RM(t,p,n,xl,l) design d exists if and
A

It
only if (1,2,3,...,t=1§ = U Pi gdis;joint), IPiI = p-1
e i=1

such that for some ordering of the elements in Py, the

successive partial sums of these elements are all distinct

and nonzero (modulo t), for all 4, 1< i< 2.

: Proof: For simplicity of notation, in the proof that follows
1 we will not use the d(i,j) notation introduced earlier.
Note that the condition on the successive partial sums in Pi

to be distinct and nonzero (mod t) can be expressed equiva-

K
lently, by subtracting two partial sums, as § 514 4+ 0 (mod t)
=]

for all 1< j < k £ pP-1, where Py = [(siJ)j.

Suppose we have a cyclic balanced RM(t,p,n,xl,l) design

d. Let fiJ map the entries of the Jth row into the corres-

th

{ ponding entries of the (J+1)th row, in the 1 pxt subarray

of d. Because d 1s a cyclic design, f1J has the following
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property: fij(x) = fiJ(o) + X. Let 844 = fiJ(o)' Define

Py = {(siJ)JISJS(p-l) = ((847+845:8530 44085 (p_1)) 4

L1

U P1 = {1,2,3,...,t-1} holds because O 1is preceded in d
i=1

by everything else exactly once. On the other hand, in the

ith pxt subarray of d, the entries along any column are }

distinct, so in particular,
fil(o),fiz(fil(o)),...,fi(p_l)(fi(p_z)(...(fil(o))...)) are
distinct. But fij(fi(J-l)("'(fil(o))"')) = 8y1¥8 ot .48y . !

K
so £ sy, 4+ 0 (mod t) follows (by subtracting two such
1=J

partial sums), for all 1< J < k < (p-1).

Conversely, assume P, = [(811,513,813,...,Si(p_l))j.
construct the cyclic balanced RM(t,p,n,xl,l) design d as }
follows: 1In the ith pxt subarray let the zeros be followed i
by the sij's in the same order as they appear in Pi‘ Then g
complete the subarray by shifts. Down a column (without loss
the first column) we have O, S ELIRCPTRRRFL IR PA R LT RY
which are all distinct by assumption. Since we complete the
subarray by shifts, the entries along any column of the sub-

array will also be distinct. With the help of Proposition 3.1,

we conclude the proof.
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Remark. An analogous result to Proposition 3.2 has been estab-
lished in which the restriction kz = 1 1is not imposed. The
authors chose to include the present version because of its
direct 1impact on the results that follow and because of its

simplicity.

We introduce two examples to illustrate how a partition,
as described in Proposition 3.2, can be associated with a

cyclic balanced RM design.

Example 1. Let t=9, p=3, n=36, 11=4 and Ap=1. Consider
Pl = [(1:7)11 P2 - [(2:6)]: P} - [(3:5)] and Pu = {(“‘:8)1- :
These Pi's satisfy the requirements of the previous proposi-

tion. The associated cyclic balanced RM(9,3,36,%,1) design 1is:

o 1 3 8 5 6 7T B 6 1 ¢ 3 4 5 6 7 8
(l g 4 5 6 7 @ ;0 (2 7k 5 6 7T 80 2
g 0 1L 2 3k 5 & (7 g8 0 L 2 3 &4 5 (6 7
¢ 3 23 4 586 T 9 g 1 2 3 % 5 6 7 8
r (3 y 5 6 T &,0 1 2 <4 b 7 $,;0 1 2 3
8 ¢ 1 2 3 & <5 6 7 3 & 5 & 7 (8 g X B .

Example 2. For t =9, p =35, xl = 2, let Pl = [(1:7:395)1
and P, = ((8,2,6,4)5. This partition corresponds to the

design:




G

7 8

Note, however, that the partition P, = ((1,7,3,4)3 and
P, = {(2,6,4,8)3 does not generate a cyclic balanced RM
design in the same fashion. This happens because, in Pz,

6 +4+8=0 (mod 9).

In the next theorem we give a constructive proof of the
existence of cyclic balanced RM(t,p,n,ll,l) designs for all
sets of parameters satisfying p < t and the basic divisibility
conditions. It will be shown later that all these designs are
connected (i.e., all linear contrasts of dire¢t and residual

effects are estimable).

Theorem 3.1. The necessary and sufficient conditions for the

existence of a cyclic balanced RM(t,p,n,ll,l) design with

p<t are n=21x;t and xl(p-l) = (t-1).

Proof: (by construction).

We first give the partitions that we use to construct

the designs, for all cases.
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case 1. (p even). cConsider the following partition of
(1,2,3,.0-’t-1j:

Py = ((1,(t-1)+1, 1#hg, (t=1)=(141)), 142h), (t-1)-(i+22,),...
coes 1400, (E-1)=(1400q), 00001 4 p-2) ‘)4 for
o_<_J<i‘—’§2—), 1< 3<%y, and for 1 =1,

P

11 = {(xl’ (t'l)‘xl: 211: (t‘l)'les 311’ (t-l)-BXl,---

eeesdhys (8=1)=grq,...,(t-1))§ where 1< J< poz)

case 2.1. (p odd and A D> 2). Define the partition as

follows:

Py = ((1,(t-1)-1, i+d,, (t-l)-(i+11), i+211, (t-l)-(i+211),...

eees 1400, (t-l)-(i+Jx1),...,i + igizlxl, (t=1)-(1 + i215-2111))1

for 0< J< p'3),151<x1 and for 1 =1,

Pil = ((Xl, (t-l)'xlt 211’ (t‘l)'len 311, (t‘l)'311:-°-

ceesdhys (t-l)-JXl,...,Q%l-)xl, (t-1))3 for 1< J< p'l).

case 2.2. (p odd and A, = 2).

1
Let Pl = ((1,(t=1)=1, 3, (t=-1)-3, 5, (t=1)=5,...
osvy I#8J, (6=2)=(1483)sveesl + 2L2%115 (t-1)=(1 + 212%21))1

for 0< J <22, ana
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P2 = ((t-1), 2, (t-1)-2, 4, (t-1)-%, 5, (t-1)-6,...
ceesy 2§, (t-l-ZJ,...,(p-l))j for 1< J < (p-3)
and (p-1) = ﬁﬁéil,

The proof consists in showing that the conditions stated in
Proposition 3.2 are satisfied for all the partitions above.
In all these cases it is straightforward to check that

Xy

121P1 = {1,2,3,40.,t-1) (disjoint) and that |Py| = p-1

for all 1< 1< Ape

k
To check the condition ¢ 5iy 4 O (mod t) for all

1< J< k< (p-1), where P, = ((913“1 < j < (p-1) 18 the

P; defined above, we note that any two (suitable) neighbor-
ing entries in Pi always sum up to t-1, for all 1 1L *l‘
This fact enables us to show that an arbitrary sum EJsiL,

as above, is never a multiple of t. A detailed verification
for all cases is given in the Appendix.

In practice, the number of treatments, t, and (possibly)
the number of periods, p, are known to the experimenter. It
is usually of interest to construct a balanced RM design 4,
with known t and p, in which the number of units, n, is
minimal, This can be achieved (as the divisibility conditions

show), if end only if A, and A, are relatively prime. The

designs in Theorem 3.1 have minimal n since *2 = 1.
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It is easy to extend the validity of the previous theorem

in the following sense:

Corollary 3.1. TIhe necessary and sufficient conditions for the
existence of a cyclic balanced RM(t,p,n,);,1,) design with

p<t and X,|\; are n=12%;t and xl(p-l) = xz(t-l).

Proof: Let xl = mxz. Construct, as in the previous theorem,
a cyclic RM(t,p,n,m,1) design. Take A, copies of this
design to obtain a cyclic balanced RM(t,p,n,ll,lz) design,

as desired.

Even though shifts prove successful in constructing bal-
anced RM designs with p < t, this is not the case for
p =t. Note that for odd t, cyclic balanced RM(t,t,t,1,1)
designs do not exist. This is so because in this case we
only have the trivial partition P1 = {1,2,3,¢405t=-1}. Clearly,
t-1

TJ= LE%llt = 0 (mod t), no matter how we order the elements
J=1

in Pl' Nonexistence is now assured by Proposition 3.2.

The construction of balanced RM(t,p,n,\;,A,) designs
for 2, A A\, 1is researched presently. Some results have

been obtained and they will be presented in a subsequent paper.
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4. Estimability and Estimation.

A statistical design is of practical use if at least the

differences between various parameters of interest can be unbiasedly

estimated from the observations. In this section we shall be

mainly concerned with the concept of estimability, so we recall

the usual definitions.
Let B be the vector of parameters and Y Dbe the vector
of observations. Suppose we assume m effects in our linear

model. Then we can write:
B’ = (ByBp+-+Bp)’

where By is the vector of parameters associated with the

1*0 errect.

Definition 4.1. The difference between two parameters is

called an elementary contrast. A linear combination of para-

meters § cJYJ is called a (linear) contrast if ¥ cJ =0k
J

Definition 4.2. A linear function of parameters

is estimable if it is equal to the expected value of some
linear function of the observations; i.e., 4’y 1is estimable
if 'Y = E(t’Y) for some vector t of constants.

ith

Definition 4.3. A design is connected for the effect

if all the linear contrasts of parameters of the 1th

estimable. A design is called connected if it i1s connected

effect are




for all the assumed effects.

We should mention that the subspace of linear contrasts
of t parameters is of dimension t-1 and is spanned by the ?

elementary contrasts.

The following lemma will be helpful in proving the next

proposition.

Lemma 4.1. Let S = {ag-a., a;-a,. q, 8y~ o008y 1780, (£o1) )0

where a;, are constants, and let (r;t) = 1. Then a;-ay

(L 4 J) can be expressed as a sum of elements of S. (All

the indexing is modulo t).

Proof: Since (r,t) = 1, the Z-module generated by r in
Zt equals Zt s0O we can write S = {ao-ar, a.-85. a2r-a3r,...,

8(¢-1)r 8¢t If i=kr and J=mr, then a; -~ 8y =

e (akr'a(k+1)r) * (a(k+l)r'°'(k+2))+"'+(a(m-l)r-amr)'

In order to show that the designs constructed in the pre-

vious section are connected, we introduce the following:

Proposition 4.1. Assume p < t. A cyclic balanced

RM(t,p,n,xl,lz) design d li connected for direct and resi-

dual effects iﬁ there exist two pxt subarrays gz_ d such

that the zeros lg the first period gg_these subarrays are

followed by a and b respectively, and (b-a,t) = 1.
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Proof: The necessary conditions n = \;t, kl(p-l) = xz(t-l)

together with p < t 1imply Ay > Ao > 1. The design d has,

therefore, at least two pxt subarrays. Suppose they are as

follows:
(0 1 2 o0 e 0 00 (t-l) (0 l 2 R EEER] (t"l)
a a+l a+2 ... a+(t-1) b b+l b+2 ... b+(t-1) (=) |

@0 e 00000 0000000000000 0000000000 0000000000

where a and b satisfy (b-a,t) = 1. Consider the entries
(1,3)s (2,3), (1,t+3), (2,t+43) in (x). We have
E(Ylj)

M+ a; + BJ + TJ-l’ E(Yl,t+3) =M + 0 + Bt+J + Ty
E(YZJ) =u+ap+ Byt T q+pyy and E(Yz,t+J) =

=H + a; + 5t+J + Tot+ -1 + Py-1° So

E[%(YiJ-YZJ + Y2,t+J-Yl,t+J)] = Tppg~l = Tapg-1? for 1< <t
The computations in the indices of parameters are mod t. We
have estimated t elementary contrasts for the direct effects.

The previous lemma assures us that all the elementary contrasts

for the direct effects are estimable. Let Trs be a linear

combination of the measurements such that E(§rs) . Ty = Ty

Now consider the entries: (1,J), (2,J), (1,t+a=b+j),
(2,t+a-b+3j) in (%). We have the following expectations:

E(Ylj) =Hd + @y + BJ + TJ"l’ E(Yl,t+a-b+.j) =

* Tapge1 ¥ Pyo1 804 E(Yp po pug) =M 4 05+ Briapeg t




p—
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* Teiny # Pa-b+j-1° Then

E[(Yy37Yo35+Y5 tra-begY1,t+a-b+3) + Tacbeg-1,3-1) =
= Pa-b+j-1"Pj-1° This holds for 1< jJ< t. Again, Lemma
4.1 implies that there exists ﬁuv’ a linear combination of

measurements, such that E(ﬁuv) * Py = Pyt

When constructing cyclic balanced RM designs it is
advisable, for purposes of estimation, that the shifts satisfy
the condition (b-a,t) = 1, as required in the above proposi-

tion.

corollary 4.1. The designs constructed in Theorem 3.1 are

connected for direct and residual effects.

Proof: 1In these designs (with the exception of xl = 2 and

p odd), the zeros in the first period of the first two pxt
subarrays are followed in the order of application by 1 and

2 respectively. Proposition 4,1 assures, therefore, connected-
ness (for direct and residual effects). In the case of A =2
and p odd, the difference between the same two entries is
(t-2). But (t-2,t) = 1, since in this case t 1is odd. So
Proposition 4.1 can be successfully applied to this case as

well. Connectedness for the residual and direct effects is

therefore established.




G
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The previous proposition assures connectedness for direct
and residual effects. This means that the ranks of the (-
matrices for these effects is at least t-1. One of the
results that follow will give us a little more insight
into what these ranks can be.

Let d be a cyclic balanced RM(t,p,n,ll,la) design
with design matrix X. The results we will establish in
the remainder of this section hold even when the design d
does not satisfy part (a) of Definition 2.1. The restriction
p < t present in the previous section won't be assumed here.

The X’X matrix of the design d is:

T p a B B
TiPates ‘a2t %t fm Tz Ut n, Paten
P (P-1)A;I; %yds p F21 PFpp .- g (=123,
&8 8y Ioyp ot Al
B pInxn plnxl
M pnlxl

where I 1is the identity matrix, J 1is the matrix with all the
entries equal to 1, J* 1is the matrix with first column entries

all zero and the rest of the entries 1. The symbol laxl stays

for the column vector of length a with all the entries 1. The

S ——————
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incidence matrix between T and p is B, = | P,, P eee P -
‘ 1 [ 11 “12 111]
Similarly, the incidence matrix between p and p 1is

is a txt incidence matrix between T (respectively p) and

th

the units in the J subarray of the design d. Since each

subarray consists of shifts of (0,1,2,...,t-1) it will be
enough to find the first row of Pij’ the other rows being
cyclic rotations of the first. There are exactly p rows

in each subarray so the sum of the entries in any row of PlJ

will be p (all 1< J< xl). Similarly, the sum in any row

of Py, will be p-1 (all 1< J<2Aq). If welet P De
the following txt matrix:

B 1

(0] 1l

10

10
P = g™
‘0
10
ol 0 _ ot
then Pjy= T &a,P" where P =P =1 and a;'s are non-
J i-0 3 i
t-1
negative integers satisfying z a; = Pp. Similarly
i=0

P,y = T Db,P” where b, are nonnegative inetgers and
23 i=0 1 i
t-1
iz b; = p-1. If the design d satisfies condition (a) of
=0

Definition 2.1, which 1s the case with all the designs constructed
in Section 3, the integers ai's and bi'e will all be 1.

We are now ready to introduce a couple of useful lemmas.




The joint c-matrix for direct and residual

Lemma 4.2.

effects is:

r M M
A1 -2 TP 2 AodA,I = = € Py P!
PRt 70, 1T 27he T pyyT1ed

C(‘Tsp) =
a B *1§p 1)
Proof: Partition the X'X matrix as follows:
’
XX, X3Xp P alige  22dext
'
XX = , Where Xlx1 =
’ ’ -
b | i (=102 Teye
Pig Byg et Rap PAyleva ]
xllxz = and
Py Fop  vor By (P-1)A11¢yq
i 1 J
= =
nIpxp Jpxn nlpxl
’ -
XoXp = Plhyn Pl i|. The matrix C{7,p)
L PR
where

obtained as: C(r,p) = XjX; - xixz(xéxz)' X5Xq

- ALt

-

is




1

/71
(HI * EﬁJ)pxp ~ pn'pxn opxl
I -
1 1
" PAnxp plnxn Onyl
lep len lel

It 1s a well-known fact that the Moore-Penrose inverse
of a symmetric matrix is symmetric, commutes with the matrix
and has the same kernel as the matrix. The following lemma
gives a way of finding the Moore-Penrose inverse of a poly-
nomial matrix in the txt matrix P introduced earlier.
Let X be an indeterminate and f(X) a (real or complex)
polynomial of degree at most (t-1) in P.

t-1 q

P

Lemma 4.3. The Moore-Penrose inverse of f(P) = ¢
== P

o N L 2.
is f(P)" = £ DbyP", where by = CotCiW +CoW H..utCy (W
i=0

a
0 :

w 1s a primitive "0 root of unity and c; equals f(wi)"1

if f(wi) 4 0 and O otherwise.
Proof: The txt permutation matrix P satisfies Pt = I

t

and has in fact X - 1 as minimal polynomial. Let's in-

troduce the following useful txt matrix;

(t-l)i’
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l 1 e o 0 1 e o 0 1 T

l W e o 0 wJ ) wt‘l
SR W R R ce. i)

B L w(t'l)J o w(t'l)(t'l)

- o4
where w 18 a primitive tth root of unity. The matrix

1

S 1is unitary and it is easy to show that S ~PS = D, where

4 ]
W

P = g :

..’wt-l

- :
Hence s'lf(P)s = f(s'lPs) = f(D), where
£(1) d

£(w)

£f(D) = . .
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The Moore-Penrose inverse of f(D) 1is

£f(D)” = v

1)-1 ir f(wi) 4 0 and O other-

wise. Set f(P)” = S£(D)” §™1. It is not difficult to

where c; equals f(w

check that f(P)~ defined above is the Moore-Penrose in-

verse of f(P). The (1,J)th entry in f(P)” 1is
s o % S0 -
e,y == I c W wWvY. f(P)" 1is a polynomial in P, because
iJ t k=0 k
t-1 t-1 t-1
& ey = I ckwki <K _ " ckwki 7KK K _ m ckwk(i+l)wk(:j+l) -
k=0 k=0 k=0

= te;+l,J+l (the indices in e;y are computed modulo t).
The coefficients bi can be now defined as
b, = l(c e Wt . te w(t'l)i) and hence f(P)~ tél b, Pt

S e et Y = il

The theorem that follows reveals some properties of the
C-matrices for direct and residual effects obtained from
cyclic balanced RM designs. For a positive integer d,
let ®(d) denote the number of positive integers less than

d and relatively prime to it.




Theorem 4.1. 1In a cyclic balanced RM(t,p,n,ll,xz) design

the C-matrices for direct and residual effects are symmetric

polynomials in P. Their ranks equal (t-1) - ¢ ¢(di) for
1

some (not necessarily same) distinct divisors d; of t.

In these designs contrasts and only contrasts of direct and

residual effects may be estimable.

Proof: From C(t,p) 1in Lemma 4.2, we obtain at once the

two C-matrices:

5oL
)3 1
1 : 1
& (sz - A1 - = J;:l Ple'ZJ) f(P) (12J = A,I - S Jrl PZJ lJ)
e L |
where f(P) = xl(p-l)x - —-t——J 5 Jrl Paj 590 and

(p"l) 1 xl .
c(p) = a,(p-1)I-- —-t———J - 2 le PyyPhy -

% A
1 %
1 1
- (A,J = A1 - B Jz Poy J.J) g(P)~ (Apd = 2,1 - = Jrl PIJP’ZJ)
Ny
= -1 P. P
where g(P) = P, I 5 JZI 15715
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Both £ and g are symmetric polynomials in P with
rational coefficients. In virtue of Lemma 4.3, we can set
c(r) = h(P) and C(p) = k(P), where h(P) and k(P) are
themselves symmetric polynomials in P with rational coeffi-

cients. The dimension of the kernel of h(P) (respectively

th

k(P)) 1is equal to the number of t roots of unity which

are also roots of h(X) (respectively k(X)). Suppose

5 4 th

w, a d root of unity for some divisor d of t, is

th

also a root of h. Then all the primitive d roots of

unity are also roots of h as images of wi under the

Galois group of automorphisms of Q(wi) over Q, the field

th

of rational numbers. There are ¢(d) primitive d roots

of unity, the roots of the cyclotomic polynomial of wi
over Q. We now show that 1 1is always a root of h. As
we pointed out previously, PZJ is a polynomial in P whose
entries along any row add up to p-l. Using this fact in

Kl(p‘l)
calculating f(1), one gets f(1l) = xl(p-l) s t -
P

1 2 1 _ (p-1)7 _
= Shy(p=1)" = Ap(p-1)[1 - i Lﬁ_] = 0. The same is

true for g, the argument being analogous. Moreover,

h(l) = g(1) - m(1)f(1)" m’ (1) = O since both g(l) and

(by Lemma %.3) f(1)° are zero. All the remarks about h
hold true for k as well. This settles the statement about
the ranks of the C-matrices in the theorem. Having always
h(l) = 0 and k(1) = O means that the row sums in C(t)
and C(p) are always zero. This implies that the two
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matrices are singular and hence, of rank at most t-l. We
know that t’r is estimable if and only if t’/ 1is in the
row span of C(t). But t’ is in the row span of C(t)
only if the sum of the entries in t 1s zero (i.e., only
if t’t 1is a linear contrast). The same holds true for the
residual effects. This completes the proof.

Let the four txt submatrices of C(t,p) (see Lemma
4.2), which we denote by AiJ’ be such that

A1 Ay
C(T ’p) = ]
[ 4
Ao A

Then AiJ are polynomials in P. By evaluating A11 and

th

at the t roots of unity it can be readily seen that

Azz
their ranks are always t-1l. By deleting the last row and
last column of these matrices we obtain two (t-1) x (t-1)

matrices which we denote by By and 322' Then

--l £ ”-1 1
(0} QJ 0o (0]
L L -

are generalized inverses of All and A22 respectively.

The usual row operations in the normal equations lead us to

the following result:




Proposition 4.2. The best linear unbiased estimators in a

cyclic balanced RM(t,p,n,Al,xz) design for the estimable

linear contrasts t’T and t’p are respectively:

’
e i 5 s . i -
6% = o o(m) [ (Xy K Xp(XoKp) Xy )= Apphzp(XipXp%p (X5Xp) TXE) ¥
and
e “Tl(x?t _x N - g -
85 = 87 0(p) T (XipX2%11 (XpXp) X5 )-Ap1AT (X41-X11 X, (X5Xp) Xp) J¥
where plJ = incidence matrix between direct effects and
units in the Jth subarray.
* P,y = incidence matrix between residual effects
and units in the Jth subarray.
3
Rap = Mgl =5 & ity
=1
e
J=1
App = }y(P-1) ~ S5—JT =5 T PPy,

p Jul

= z -
C(1) = Ay = AjphzzAl,

’ -
Clo) = Az - Ayph1ihyp
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il 1 1 =]
=T & T4 e
(n pn_)pxp PR pxn Opx1
X% = - -1'- .1‘.
( 2 2) annxp pInxn 0nxl
o
1xp O1xn O1x1
Xy7 = columns in the design matrix corresponding

to the direct effects.

X.. = columns in the design matrix corresponding

to the residual effects.
X, = columns in the design matrix not in Xyy ©Or Xyp

Y = vector of observations (ordered the same way as in

the design matrix).

Remark. When the design is connected C(t)~ and C(p)~ can
be computed the same way as Ail’ Otherwise Lemma 4.3 can

be used.
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We have C(r)f = TY and C(p)p = RY where T and R
have been explicitly given above. It can be shown, in a
straightforward manner, that both T and R can be parti-
tioned into llp submatrices of size txt each and each

such submatrix is a polynomial in the matrix P, with zero

row sums. Let these partitions be T =|T, ... and
1 AP

K= [Rl R"lp].

Theorem 4.2. 1In a cyclic balanced and connected RM(t,p,n,xl,xz)
: design if the b.l.u.e. of r, - v, (respectively p, - P1)

is known, then the b.l.u.e. of any linear contrast of direct

(respectively residual) effects can be derived from it.

Proof: Recall that for a given vector ¢’ = (Ll’LZ""’Lt)

its shift starting at i is the vector (... Listyaty sond® &

th

denoted by 1i(4’), in which 1, 1is in the 1 position.

~

L2 T |

Indices are computed modulo t. Suppose £’C(t)r =

where ¢’ = (Ll,cz,...,&t). Then the b.l.u.e. of
4

To-T; 18 (2'Ty ... 2 Tklp)y‘ Because all the matrices

involved are polynomials in P, ¥, - %, ; = 1(¢)c(r)r.

)Y

’
Hence the b.l.u.e. of T, - v, , 1is (1(¢ )Tl . 1(:,')'1‘)‘lp

for all 0 < 1< t-1. This can be formulated in terms of

the entries of the design as follows: The first row of treat-
ments in each subarray of size pxt should be always the
same, say O,l,...,t-1. Associate the weights (coefficients)
of the b.l.u.e. of T~ "1 with the corresponding entries




28.

(cells) in this design. To compute the b.l.u.e. of
Ty T Ti41? leave the welghts assocliated with the same cells,
but do cyclic column rotations in each subarray until the
cells which were filled by O will be filled by 1. The
welght associated with a certain cell will then become the
coefficient of the observation which falls in that cell after
these cyclic rotations of columns. An example will follow.
Any other linear contrast of direct effects can be expressed
as a linear combination of the t elementary contrasts con-
sidered above. The b.l.u.e. of the linear contrast is
then the same linear combination of the b.l.u.e.'s of these
elementary contrasts. The same holds true for residual
effects.

Let's illustrate by a small example what the previous
result says. Given the RM(3,2,6,2,1)

the bd.l.u.e. for o ~ 13 is

1
3-(3{11 + Yo = By = Yy = Yy 4 2Wpg -
- Yy - Ypp + 2y + Yy + Yy - 2Y26) .

The b.l.u.e. of T2"Tg can be found by writing the design

as
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and using the same (unchanged) weights as previously:

vp = To = 3(Ya3 * Yoy 7 2y - Yyg - Yy + 2y -
The b.l.u.e. of 270 -7y~ T, can be found by subtracting
the b.l.u.e. of T2 " To from that of To " T1°

A list of partitions for values of t between 3 and
20 1is attached. From each partition one can exhibit the
corresponding balanced connected designs as shown in the
proof of Proposition 3.2 and the two examples following it.
A comprehensive bhibliography on Repeated Measurements Designs,

prior to 1975, can be found in A. Hedayat and K. Afsarinejad
(1975).
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Appendix

Proof of Theorem %l b

i We proceed in showing that the conditions stated in
; Proposition 3.2 are satisfied for all the partitions listed
after the statement of Theorem 3.1l. In all these cases it

is straightforward to check that
5]
U P = (L,2,3,...,t-1} (disjoint) and that |P1| = p=-1
i=1

for all 1< 1< xl.

k
case 1. (p even). To check the condition I 84y 4 0 (mod t)
4=J
for all 1< J < k< (p-1), where P, = ((siJ)]l <3< (p-1)

is the P, defined above, we note that Sy3 % 84,4541 = (t-1)

for all odd 1< J< (p-1) and a1l 1< i< A,. This fact
kK

enables us to classify an arbitrary sum T sic’ as above,

L=
in one of the following four patterns:

(a) [(1+Jxl) + (t=1) - (i+Jx1)]+...+[(1+k11) + (t-1) - (1+kx1)
for all 1< J< k¢ 12%&1 « If for some J and k
thig sum is equal to mt (for some m € Z) we have
(k-J+1)(t-1) = mt. Or, (k-j+1) = (k-j+l-m)t. But
2 < (k-J+1) < igéll < t, which leads to a contradiction.
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(v) [(1+Jxl) + (t-1) - (1+Jx1)]+...+[(i+xxl) + (t-1) - (i+k11)]

+ (i+(k+l)k1) for all 1< j< kg 12%&1. If for some
J and k this sum is equal to mt, we get
(-k+J=-1+i+(k+1)Ay) = (m-(k=J+1))t. But 1< i+J =

-k + J-1+ 1+ (kel) < (-k+J-1+1+(k+1)xl) -

5 e e p-2) _Pp ) i
- (k+1)).l +1-1-(k-3) < 1—2——11 +2y = ?Al < (p l)kl =
(t-1) < t. This contradicts the fact that
(-k+J-1+i+(k+l)x1 is a multiple of t.

(e) (t=1) = (14+(J-1)%;) + [(4+4Jxy) + (t-1) = (L+J2;)) +
oot [(14KA) + (t-1) - (i+kr )] for all
0< J-1< k< p-#). This sum is a multiple of t only 1
if (1+(J-1)x1+k-3+2) is a multiple of t. But

(i+(d-l)x1+k-J+2) is not a multiple of t since

2 ¢ (14(J-1aprk-g42) < aq + {BpEh L (RS 4 2 ¢

< p'l)xl + iﬁill < ﬁﬁgil + 13512 = (t-1) < t.

(d)  (t-1) = (1+(J-1)% ) + [L+In+(t-1)=(14+92,)] +
co ot [(i+xxl+(t-1)-(i+kll)] + 1+ (x+1)xl for all

0< (3-1) < (k+1) < 12%32. Proceeding as previously,
this sum is a multiple of t for some J and k, only
if (k-J+2)(x1-1) is a multiple of t. But

2 ¢ (k-3#2)(2y-1) < (e1iy < dBgEh, o L8D) o ¢,

We showed that, for 1< 1< 1;, the conditions on P, 's

required in Proposition 3.2 are satisfied. Since 1 < A, has
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not been used in any of the previous inequalities, the previous

four patterns apply also to P& with the last entry removed.
1

So we only have to consider the cases that involve the last

entry of Px & 1leey E=1,
1l

(al) 24(t-1) + (t-1), for 0< ¢ < p-2)’ where ¢ 1is the

number of successive pairs of entries in Pi that add
1l

up to (t-1). Clearly &(t-1) + (t-1) is a multiple
of t only if (4+1]) is a multiple of t. But

1 < ¢4l ¢ {p:2)

< t.
(by)  (t=1) = gy + £(t-1) + (t-1), for 0< ¢ < P-i) o

(J+2) = 12521. Here ¢ has the same meaning as before.
This sum is a multiple of t only if (z+2+3xl) is also

a multiple of t. Since 2 < (4+2+Jx;) < (¢42) +

R I R i e

< 2t-1 < t, the proof for p even is completed.

IN

case 2.1. (p odd and iy > 2). The same four patterns
arise here as in the case of p even and they are ruled out
the same way. Therefore, we only have to consider the sums

that involve the last entry of Px .
1

In what follows, let +{ be the number of successive pairs

of entries in Py that add up to (t-1).
1l
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(a5) 2(t-1) + Qgﬁxl + (t-1); for all 0< ¢t < p=3),
Clearly, 2(t-1) + p-l)ll + (t=-1) = mt (for some m € Z)
only if (-4 + p'l)xl - 1) = (m-¢-1)t. But
o AElln 1) ¢ (4 ¢ AL o) o LoDy (8D o g

(b2) (t-1) - g+ L(t-1) + p-1)>‘1 + (t-1); for all H
0¢ ¥t < P=3), and J = 12%21 - ¢t. If this sum is mt
(for some m € Z), then (iB%ll - J)xl - 4-2 = (m=-¢=-2)t. j

Since -t<-&5(%—1—)-.1)11-4-2_<_12§1—)11=1-t-§1—) :

< t, we can only have (12511 - J)xl =4 - 2. Substitut-

ing for J =S%Zl—{" we get \1=%$§- But i—:g is

a positive integer if and only if ¢ = 0, in which case
A

1= 2.
case 2.2. (p odd and Ay =2). P, is defined the same way
as in the previous case, so we should only examine the partial
sums in P2. But the partial sums in P2 with the first entry
removed are satisfactory by case 1. Cases involving the first
entry in P2 should only be considered. There are two possi-
bilities: (a3) (t-1) + ¢(t-1) and (b3) (t=1) + 2(t-1) + 23,
where 0 < ¢ < P-3) ana (in (b3)) J =1t + 1. In both these
cases the remainder modulo t is ¢4 + 1 and 1< ¢ + 1< 253

< t. This concludes the construction of the designs and the

proof of the theoren.

....-...-.............'.‘-.--'-.-ﬂ--ﬂ-ﬁ..ﬂh-nt




t arbitrary, p=2: |(1)|(2)[(3)] ... |(t-1)]|

t=5,

t=7,

t=7,

t=9,

t=9,

t=10,
t=11,
t=11,
t=13,
t=13,
t=13,
t=15,
t=15,
t=16,
t=16,
t=17,
t=17,
t=17,
t=19,

t=19’
t=19:
t=19,

p=5:
p=9:
p=3:

p=U:
p=7:
P=10:

34,

1(1,3)](4,2)]

[(1,5)](2,4)](3,6)]

1(1,5,3)|(2,4,6)|
1(1,7)1(2,6)(3,5) | (4,8)]
1(1,7,3,5)(8,2,6,4)|
1(1,8,4)](2,7,5)|(3,6,9)|
1(1,9)1(2,8)(3,7)| (4,6)[(5,10) |
1(1,9,3,7,5)|(2,8,4,6,10) |
1(1,11)](2,120)[(3,9) | (4,8)|(5,7)|(6,12)|
1(1,11,5)(2,10,6)|(3,9,7) | (4,8,12) | i}
|(1,11,3,9,5,7)|(12,2,10,4,8,6) |
1(1,13){(2,12)|(3,21)|(%4,10)|(5,9)16,8) | (7,14)|
|(1,13,3,11,5,9,7)|(2,12,4,10,6,8,14) |

| (1,14,6)](2,13,7)|(3,12,8)|(%4,11,9)|(5,10,15) |
|(1,14,4,11,7)|(2,13,5,10,8)|(3,12,6,9,15) |
|(1,15)|(2,14) | (3,13) | (4,12)|(5,11)|(6,10)|(7,9){(8,16)|
|(1,15,5,11)|(2,14,6,10)|(3,13,7,9) | (4,12,8,16) |
1(1,15,3,13,5,11,7,9) | (16,2,14,4,12,6,10,8) |

1(1,17)](2,16) | (3,15) | (4,14)|(5,13)|(6,12)|(7,11)|
|(8’10)|(9:18)|

I(1:17:7)|(2:16:8)|(3:1599)|(4:1u:10)|(5:3:11)|(6-12918)|
l(1,17,4,14,7,11)|(2,26,5,13,8,10)|(3,15,6,12,9,18) |
|(1,17,3,15,5,13,7,11,9)|(2,16,4,14,6,12,8,10,18) |
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